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Context 

 

Computer architecture was a remarkably 

active field of research in the 1980s, 

primarily due to impressive advances in 

circuit technology. Not only was technology 

enabling the implementation of faster and 

more complex designs, but it was also 

lowering the cost barriers to building 

experimental models that played a major role 

in testing novel architectural concepts. Much 

of the flurry of research of that time was 

related to investigating the relationship 

between architecture and programming 

languages, i.e. identifying the kind of 

hardware/software interfaces that would 

optimize the execution of (compiled) code 

written in various high level languages [1]. 

RISC architectures [2], Lisp and Prolog 

machines [3, 4], tagged architectures [5], 

array processors [6], recursive architectures 

[7]: these are but a few of the multitude of 

designs that were being explored and 

experimented with. Some of those solutions 

were later incorporated into commercial 

computers, others proved to be unrealistic, 

but most of them helped shape the current 

landscape of practical computing. 

 

Our interest in computer architecture dates 

from the late 1970s, when we were part of a 

Bucharest Politehnica University team that 

designed and built the production prototype 

of DIAGRAM, a graphics workstation 

produced and commercialized by FEPER. 

DIAGRAM was built around a Z80-based bi-

processor machine featuring a hardware 

accelerator for graphics. Our responsibilities 

included, on the one hand, the design and 

implementation of the main (Z80-based) 

processing unit and associated hardware I/O 

drivers for devices such as floppy disks and, 

on the other hand, the design and 

implementation of an operating system 

kernel with support for pre-emptive 

multitasking. 

 

Projects 

 

After the DIAGRAM project we joined 

ICPE, a research institute for electrical 

engineering, to do applied research work on 

innovative computer architectures, with a 

particular emphasis on the potential of 

functional and logic programming languages 

to harness the power of the rapidly evolving 

circuit technology. Our goal was to build, 

from the ground up, a complete solution for a 

real world problem that would be intractable 

using stock hardware. The only way to do 

that was to find a customer who would have 

the resources to fund our work. Some local 

market research brought us in front of such a 

customer, Petromar, a Romanian company 

doing off-shore oil drilling and exploration 

work in the Black Sea. Petromar’s CEO had 

been impressed by work done in the West 

with expert systems for oil drilling, but 

commercial embargoes in force at that time 

(1985) did not allow him to consider the 

purchase of a turnkey solution. He accepted 

our project proposal to build an original 

solution around a novel architecture, the S-

machine [8, 9, 10], that would be capable of 

running the expert system (Prolog) code 

within the real-time constraints imposed by 

their application. The work was done under 

the umbrella of ICPE, that allowed us to 

build the team needed to do all the design 

and implementation work. 

 

The S-machine was designed to be used as an 

“intelligent” hardware accelerator connected 

to a general-purpose computer through a 

high-speed interface and fully integrated with 

the host operating system. DEC PDP 11 

running Unix and IBM PC were the two 

types of computers that could be connected 

to the S-machine. Code libraries written in C 

were designed and implemented to make the 

S-machine transparent to programs running 

on host machines, i.e. the S-machine was 

seen as a regular API (application 

programming interface).   

 

Most of the code for the Prolog environment 

(user interfaces, translator, code editor, 
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debugger) was run on the host machine and 

was based on work done before the S-

machine had been designed [11]. 

Implementing the Prolog runtime engine on 

the S-machine itself turned a conventional 

Prolog implementation into a high-speed 

system (while running tests it was not 

unusual to notice speedups of more than an 

order of magnitude). 

 

In 1989, while the Petromar project was in an 

advanced stage, our team started to work on a 

new job. ITCI, a Romanian research institute 

for computing technology, was interested to 

bid for a request for a Lisp machine coming 

through Comecon (the Eastern block trade 

organization) from a Soviet research institute 

for the aerospace industry. ITCI asked us to 

join forces with them to write a project 

proposal that was accepted by the customer. 

As a consequence, part of our team started to 

work with the ITCI team on this new project 

and a new version of the S-machine was 

about to be built. The Lisp programming 

environment was on a path very similar to 

that successfully taken to build the Prolog 

system: implementing a Lisp runtime 

environment on the S-machine and 

combining it with modules developed for 

conventional implementations [12, 13]. 

 

1990 was a very eventful year in Eastern 

Europe. As a consequence, progress on our 

projects slowed down considerably, before 

coming to a halt (e.g. Comecon was 

disbanded and took with it our contract with 

the Moscow institute, but not before 

successfully reaching the first milestone). 

 

In conclusion, our S-machine projects were a 

success while they lasted. We managed to 

successfully build a hardware machine 

having a novel architecture together with its 

associated software and our work was fully 

funded by real customers. However, our goal 

to implement the machine in VLSI 

technology and turn it into a commercial 

product had to be abandoned. 

 

The S-machine 

 

The S-machine was a 32-bit computer with 

hardware support for symbolic languages like 

Lisp and Prolog, but able to run with no time 

penalty compiled code for programs written 

in procedural languages like C. Lisp 

implementations were usually inefficient 

because the control of program execution on 

conventional machines is implicitly 

sequential and memories are linearly 

organized, while in Lisp both data structures 

(lists) and evaluation procedures are 

recursive. We did not want to restrict our 

machine to Lisp, but similar problems were 

posed by Prolog, so we chose to design a 

general-purpose architecture with a reduced 

set of instructions and hardware support for 

recursive control strategies and compact list 

representation of both data and programs. 

 

Given a list l, car(l) is a function that selects 

the first element of l; cdr(l) is a function 

whose value is l without its first element (e.g. 

if l = (a, b, (c, d)), car(l) = a, cdr(l) = (b, (c, 

d)). Lists are represented usually by means of 

cells made up of two pointers each, CAR and 

CDR. However, statistical studies carried out 

on large Lisp programs showed that if lists 

were linearized, more than 98% of list CDRs 

pointed to the next cell. As a consequence, a 

technique called CDR-coding [14] can be 

used to represent lists: every pointer P is 

represented in a separate memory word 

together with two additional bits encoding 

information about CDRs of list cells, i.e. 

“CAR is P, CDR is in the next word”, “CAR 

is P, CDR is nil (empty list)”, “CAR is P, 

CDR is the next word”, “the cell is relocated 

at P”. 

 

In the S-machine lists are represented using 

CDR-coding, that unifies the management of 

lists and contiguous blocks of memory. 

Memory words are 32 bit long and contain a 

24 bit pointer field (P), a two bit CDR field 

(used for CDR coding) and a six bit data type 

field identifying the type of data pointed to 

by P. When lists are used to store machine 

programs, the data type field is interpreted as 

an operation code, while the pointer field 

holds the operands. The representation of 

programs by means of lists implies that, 

unlike in the case of conventional computers, 

on the S-machine any program, regardless of 

the language it is written in, can be 

manipulated by any other program.  
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List representation of data/programs 

 

 

A fixed value of the data type field is 

reserved for program lists: it indicates that 

the pointer field holds the address of a 

program list. Machine programs can 

therefore be nested lists, with instructions as 

“atomic” data. To execute such a program 

means to (recursively) traverse the list 

according to some discipline and execute 

individual instructions as they are 

encountered; the program list traversal 

strategy can be specified by the user (i.e 

language processor). Suppose that the S-

machine has to execute a program list l. If 

car(l) is an instruction, it is executed and 

control is passed to cdr(l), but if car(l) is a 

program list, the execution could follow 

either branch (note that enough information 

has to be saved about the branch that is not 

followed in order to resume its execution at a 

later stage). Let a register, rl, hold the starting 

address of a procedure to be invoked 

whenever the processor is faced with such a 

choice. Assuming that car(l) is a program list 

itself, a trapping mechanism saves both car(l) 

and cdr(l) in two registers, then control is 

passed to the address held in rl. The 

procedure stored at that address decides 

which program branch is to be followed and 

which one is to be saved; if the list under 

execution is empty, control is passed to a 

procedure pointed to by another register, re. 

Procedures pointed to by rl and re implement 

the traversal strategy of program lists; since 

both rl and re are general-purpose registers, 

their contents may be changed at will, hence 

the traversal strategy can be dynamically 
modified. Note that if the data type/operation 

code field contains the value reserved for the 

program list type, that value can also be seen 

as an operation code: it activates the trapping 

mechanism. 
 

While the logical address space of the S-

machine is continuous, the first 16 Kwords 

were implemented in fast memory. The 

machine had 128 general-purpose registers, 

out of which 64 were global and 64 local. 

The global register set takes up the first 64 

words of fast memory, while the local 

register set specifies a window made up of 

any 64 consecutive memory words, with 

addresses calculated by adding an offset 

(derived from the register number) to the 

contents of a base register. The local register 

set can be used to hold local variables of 

functions and procedures: if the base register 

is appropriately set on procedure entry, then 

local variables are accessible via register 

references. For efficiency reasons, live 

contexts should reside in fast memory: it is 

up to compilers to generate code for dealing 

with fast memory management. 

 

The S-machine has a set of 61 simple 

hardwired instructions with a uniform 

representation. Instructions are register-to-

register (except for jumps and load/store 

instructions). Besides the usual data transfer, 

logical, and arithmetic instructions, two 

instructions implement the most frequently 

used list operations: car ri, rj and cdr ri, rj. A 

wide range of jump instructions, including 2n 

jumps, some of them using masks to test 

selected bits of special purpose state 

registers, can be used for efficient dynamic 

data type checking, which is a vital part of 

the runtime support for symbolic languages. 

 

At the hardware implementation level, most 

functional modules have a symmetric 

structure, resulting in increased efficiency of 

program execution. Main memory is 

interleaved while the fast memory is made up 

of two identical banks containing the same 

information (two simultaneous read 

operations per memory cycle can therefore be 

executed, with write operations altering 

corresponding addresses from both banks). 

Efficiency gains brought about by the dual 

hardware structure include simultaneous 

access to left and right operands residing in 

global registers and local registers allocated 

in fast memory, the execution of parallel 

operations in the two sections of the 

processor, and fast transfers of compact data 

blocks. Prefetching of instructions is 
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favoured by the compact list representation 

of programs. 

 

The S-machine prototype was built in TTL-S 

and TTL-LS technology. The processor is 

sequentially controlled by a 100 ns single 

phase clock. The fast memory has a 100 ns 

cycle and is built out of TTL-S chips, while 

the main memory is implemented in MOS 

DRAM technology and has a 350 ns cycle.  
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