
1

The S-Machine, an Architecture for

Symbolic Processing

Cristian Băleanu, Dan Tomescu

Ro-Micro, Brașov, 28 June 2024

Context

Computer architecture was a remarkably

active field of research in the 1980s,

primarily due to impressive advances in

circuit technology. Not only was technology

enabling the implementation of faster and

more complex designs, but it was also

lowering the cost barriers to building

experimental models that played a major role

in testing novel architectural concepts. Much

of the flurry of research of that time was

related to investigating the relationship

between architecture and programming

languages, i.e. identifying the kind of

hardware/software interfaces that would

optimize the execution of (compiled) code

written in various high level languages [1].

RISC architectures [2], Lisp and Prolog

machines [3, 4], tagged architectures [5],

array processors [6], recursive architectures

[7]: these are but a few of the multitude of

designs that were being explored and

experimented with. Some of those solutions

were later incorporated into commercial

computers, others proved to be unrealistic,

but most of them helped shape the current

landscape of practical computing.

Our interest in computer architecture dates

from the late 1970s, when we were part of a

Bucharest Politehnica University team that

designed and built the production prototype

of DIAGRAM, a graphics workstation

produced and commercialized by FEPER.

DIAGRAM was built around a Z80-based bi-

processor machine featuring a hardware

accelerator for graphics. Our responsibilities

included, on the one hand, the design and

implementation of the main (Z80-based)

processing unit and associated hardware I/O

drivers for devices such as floppy disks and,

on the other hand, the design and

implementation of an operating system

kernel with support for pre-emptive

multitasking.

Projects

After the DIAGRAM project we joined

ICPE, a research institute for electrical

engineering, to do applied research work on

innovative computer architectures, with a

particular emphasis on the potential of

functional and logic programming languages

to harness the power of the rapidly evolving

circuit technology. Our goal was to build,

from the ground up, a complete solution for a

real world problem that would be intractable

using stock hardware. The only way to do

that was to find a customer who would have

the resources to fund our work. Some local

market research brought us in front of such a

customer, Petromar, a Romanian company

doing off-shore oil drilling and exploration

work in the Black Sea. Petromar’s CEO had

been impressed by work done in the West

with expert systems for oil drilling, but

commercial embargoes in force at that time

(1985) did not allow him to consider the

purchase of a turnkey solution. He accepted

our project proposal to build an original

solution around a novel architecture, the S-

machine [8, 9, 10], that would be capable of

running the expert system (Prolog) code

within the real-time constraints imposed by

their application. The work was done under

the umbrella of ICPE, that allowed us to

build the team needed to do all the design

and implementation work.

The S-machine was designed to be used as an

“intelligent” hardware accelerator connected

to a general-purpose computer through a

high-speed interface and fully integrated with

the host operating system. DEC PDP 11

running Unix and IBM PC were the two

types of computers that could be connected

to the S-machine. Code libraries written in C

were designed and implemented to make the

S-machine transparent to programs running

on host machines, i.e. the S-machine was

seen as a regular API (application

programming interface).

Most of the code for the Prolog environment

(user interfaces, translator, code editor,

2

debugger) was run on the host machine and

was based on work done before the S-

machine had been designed [11].

Implementing the Prolog runtime engine on

the S-machine itself turned a conventional

Prolog implementation into a high-speed

system (while running tests it was not

unusual to notice speedups of more than an

order of magnitude).

In 1989, while the Petromar project was in an

advanced stage, our team started to work on a

new job. ITCI, a Romanian research institute

for computing technology, was interested to

bid for a request for a Lisp machine coming

through Comecon (the Eastern block trade

organization) from a Soviet research institute

for the aerospace industry. ITCI asked us to

join forces with them to write a project

proposal that was accepted by the customer.

As a consequence, part of our team started to

work with the ITCI team on this new project

and a new version of the S-machine was

about to be built. The Lisp programming

environment was on a path very similar to

that successfully taken to build the Prolog

system: implementing a Lisp runtime

environment on the S-machine and

combining it with modules developed for

conventional implementations [12, 13].

1990 was a very eventful year in Eastern

Europe. As a consequence, progress on our

projects slowed down considerably, before

coming to a halt (e.g. Comecon was

disbanded and took with it our contract with

the Moscow institute, but not before

successfully reaching the first milestone).

In conclusion, our S-machine projects were a

success while they lasted. We managed to

successfully build a hardware machine

having a novel architecture together with its

associated software and our work was fully

funded by real customers. However, our goal

to implement the machine in VLSI

technology and turn it into a commercial

product had to be abandoned.

The S-machine

The S-machine was a 32-bit computer with

hardware support for symbolic languages like

Lisp and Prolog, but able to run with no time

penalty compiled code for programs written

in procedural languages like C. Lisp

implementations were usually inefficient

because the control of program execution on

conventional machines is implicitly

sequential and memories are linearly

organized, while in Lisp both data structures

(lists) and evaluation procedures are

recursive. We did not want to restrict our

machine to Lisp, but similar problems were

posed by Prolog, so we chose to design a

general-purpose architecture with a reduced

set of instructions and hardware support for

recursive control strategies and compact list

representation of both data and programs.

Given a list l, car(l) is a function that selects

the first element of l; cdr(l) is a function

whose value is l without its first element (e.g.

if l = (a, b, (c, d)), car(l) = a, cdr(l) = (b, (c,

d)). Lists are represented usually by means of

cells made up of two pointers each, CAR and

CDR. However, statistical studies carried out

on large Lisp programs showed that if lists

were linearized, more than 98% of list CDRs

pointed to the next cell. As a consequence, a

technique called CDR-coding [14] can be

used to represent lists: every pointer P is

represented in a separate memory word

together with two additional bits encoding

information about CDRs of list cells, i.e.

“CAR is P, CDR is in the next word”, “CAR

is P, CDR is nil (empty list)”, “CAR is P,

CDR is the next word”, “the cell is relocated

at P”.

In the S-machine lists are represented using

CDR-coding, that unifies the management of

lists and contiguous blocks of memory.

Memory words are 32 bit long and contain a

24 bit pointer field (P), a two bit CDR field

(used for CDR coding) and a six bit data type

field identifying the type of data pointed to

by P. When lists are used to store machine

programs, the data type field is interpreted as

an operation code, while the pointer field

holds the operands. The representation of

programs by means of lists implies that,

unlike in the case of conventional computers,

on the S-machine any program, regardless of

the language it is written in, can be

manipulated by any other program.

3

List representation of data/programs

A fixed value of the data type field is

reserved for program lists: it indicates that

the pointer field holds the address of a

program list. Machine programs can

therefore be nested lists, with instructions as

“atomic” data. To execute such a program

means to (recursively) traverse the list

according to some discipline and execute

individual instructions as they are

encountered; the program list traversal

strategy can be specified by the user (i.e

language processor). Suppose that the S-

machine has to execute a program list l. If

car(l) is an instruction, it is executed and

control is passed to cdr(l), but if car(l) is a

program list, the execution could follow

either branch (note that enough information

has to be saved about the branch that is not

followed in order to resume its execution at a

later stage). Let a register, rl, hold the starting

address of a procedure to be invoked

whenever the processor is faced with such a

choice. Assuming that car(l) is a program list

itself, a trapping mechanism saves both car(l)

and cdr(l) in two registers, then control is

passed to the address held in rl. The

procedure stored at that address decides

which program branch is to be followed and

which one is to be saved; if the list under

execution is empty, control is passed to a

procedure pointed to by another register, re.

Procedures pointed to by rl and re implement

the traversal strategy of program lists; since

both rl and re are general-purpose registers,

their contents may be changed at will, hence

the traversal strategy can be dynamically
modified. Note that if the data type/operation

code field contains the value reserved for the

program list type, that value can also be seen

as an operation code: it activates the trapping

mechanism.

While the logical address space of the S-

machine is continuous, the first 16 Kwords

were implemented in fast memory. The

machine had 128 general-purpose registers,

out of which 64 were global and 64 local.

The global register set takes up the first 64

words of fast memory, while the local

register set specifies a window made up of

any 64 consecutive memory words, with

addresses calculated by adding an offset

(derived from the register number) to the

contents of a base register. The local register

set can be used to hold local variables of

functions and procedures: if the base register

is appropriately set on procedure entry, then

local variables are accessible via register

references. For efficiency reasons, live

contexts should reside in fast memory: it is

up to compilers to generate code for dealing

with fast memory management.

The S-machine has a set of 61 simple

hardwired instructions with a uniform

representation. Instructions are register-to-

register (except for jumps and load/store

instructions). Besides the usual data transfer,

logical, and arithmetic instructions, two

instructions implement the most frequently

used list operations: car ri, rj and cdr ri, rj. A

wide range of jump instructions, including 2n

jumps, some of them using masks to test

selected bits of special purpose state

registers, can be used for efficient dynamic

data type checking, which is a vital part of

the runtime support for symbolic languages.

At the hardware implementation level, most

functional modules have a symmetric

structure, resulting in increased efficiency of

program execution. Main memory is

interleaved while the fast memory is made up

of two identical banks containing the same

information (two simultaneous read

operations per memory cycle can therefore be

executed, with write operations altering

corresponding addresses from both banks).

Efficiency gains brought about by the dual

hardware structure include simultaneous

access to left and right operands residing in

global registers and local registers allocated

in fast memory, the execution of parallel

operations in the two sections of the

processor, and fast transfers of compact data

blocks. Prefetching of instructions is

4

favoured by the compact list representation

of programs.

The S-machine prototype was built in TTL-S

and TTL-LS technology. The processor is

sequentially controlled by a 100 ns single

phase clock. The fast memory has a 100 ns

cycle and is built out of TTL-S chips, while

the main memory is implemented in MOS

DRAM technology and has a 350 ns cycle.

References

1. K. Kavi et al, HLL Architectures: Pitfalls

and Predilections, Proc. 9th Sym. Computer

Architecture, 1982, 18-23.

2. D. A. Patterson, Reduced Instruction Set

Computers, Comm. ACM 28 (1), 1985, 8-

21..

3. D. A. Moon, Architecture of the Symbolics

3600, Proc. 12th Symp. On Computer

Architecture, 1985, 76-83.

4. R. Nakazaki, Design of a High-Speed

Prolog Machine (HPM), Proc. 12th Symp. On

Computer Architecture, 1985, 191-197.

5. F. Gehringer, J.L. Keedy, Tagged

Architectures: How Compelling Are Its

Advantages, Proc. 12th Symp. On Computer

Architecture, 1985, 162-170.

6. V. Zakharov, Parallelism and Array

Processing, IEEE Trans. Comp. C-33 (1),

1984, 45-78

7. P.C. Treleaven, R. P. Hopkins, Recursive

Computer Architecture for VLSI, Proc. 9th

Symp. On Computer Architecture, 1982,

229-238.

8. C. Băleanu, D. Tomescu, An Architecture

for Symbolic Processing, Information

Processing Letters, 26 (4), 1987, 217-222.

9. C. Băleanu, D. Tomescu, A General-

Purpose Machine with a List-Structured

Memory, Preprint, ICPE, 1, 1987.

10. D. Tomescu, C. Băleanu, The S-Machine:

Design and Applications, Computers and

Artificial Intelligence, 7 (5), 1988, 461-470.

11. D. Tomescu, V. Secarin, The Pseudo-

Prolog Programming Environment, 8 (2),

1989, 131-139.

12. D. Teodosiu, tLisp – A semicompiled

Lisp on a Microcomputer, Computers and

Artificial Intelligence, 7 (3), 1988, 193-202.

13. D. Teodosiu, HARE: An Optimizing

Portable Compiler for Scheme, ACM

SIGPLAN Notices, 26 (1), 109-120

14. W. J. Hansen, Compact List

Representation: Definition, Garbage

Collection, and System Implementation,

Comm. ACM, 12 (9), 1969, 499-507.

